Abstract
Synthetic micro/nanomotors (MNMs) are human-made machines characterized by their capacity for undergoing self-propelled motion as a result of the consumption of chemical energy obtained from specific chemical or biochemical reactions, or as a response to an external actuation driven by a physical stimulus. This has fostered the exploitation of MNMs for facing different biomedical challenges, including drug delivery. In fact, MNMs are superior systems for an efficient delivery of drugs, offering several advantages in relation to conventional carriers. For instance, the self-propulsion ability of micro/nanomotors makes possible an easier transport of drugs to specific targets in comparison to the conventional distribution by passive carriers circulating within the blood, which enhances the drug bioavailability in tissues. Despite the promising avenues opened by the use of synthetic micro/nanomotors in drug delivery applications, the development of systems for in vivo uses requires further studies to ensure a suitable biocompatibility and biodegradability of the fabricated engines. This is essential for guaranteeing the safety of synthetic MNMs and patient convenience. This review provides an updated perspective to the potential applications of synthetic micro/nanomotors in drug delivery. Moreover, the most fundamental aspects related to the performance of synthetic MNMs and their biosafety are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.