Abstract

BackgroundIntegration of synthetic metabolic pathways to catabolically diverse chassis provides new opportunities for sustainable production. One attractive scenario is the use of abundant waste material to produce a readily collectable product, which can reduce the production costs. Towards that end, we established a cellular platform for the production of semivolatile medium-chain α-olefins from lignin-derived molecules: we constructed 1-undecene synthesis pathway in Acinetobacter baylyi ADP1 using ferulate, a lignin-derived model compound, as the sole carbon source for both cell growth and product synthesis.ResultsIn order to overcome the toxicity of ferulate, we first applied adaptive laboratory evolution to A. baylyi ADP1, resulting in a highly ferulate-tolerant strain. The adapted strain exhibited robust growth in 100 mM ferulate while the growth of the wild type strain was completely inhibited. Next, we expressed two heterologous enzymes in the wild type strain to confer 1-undecene production from glucose: a fatty acid decarboxylase UndA from Pseudomonas putida, and a thioesterase ‘TesA from Escherichia coli. Finally, we constructed the 1-undecene synthesis pathway in the ferulate-tolerant strain. The engineered cells were able to produce biomass and 1-undecene solely from ferulate, and excreted the product directly to the culture headspace.ConclusionsIn this study, we employed a bacterium Acinetobacter baylyi ADP1 to integrate a natural aromatics degrading pathway to a synthetic production route, allowing the upgradation of lignin derived molecules to value-added products. We developed a highly ferulate-tolerant strain and established the biosynthesis of an industrially relevant chemical, 1-undecene, solely from the lignin-derived model compound. This study reports the production of alkenes from lignin derived molecules for the first time and demonstrates the potential of lignin as a sustainable resource in the bio-based synthesis of valuable products.

Highlights

  • Integration of synthetic metabolic pathways to catabolically diverse chassis provides new opportunities for sustainable production

  • Adaptation of A. baylyi ADP1 to high concentration of ferulate In this study, ferulate was used as the model compound of lignin-derived molecules (LDMs)

  • Comparison of growth between wild type and adapted ADP1 To compare the growth between the wild type and adapted ADP1 when ferulate was used a sole carbon source, both strains were precultivated in mineral salts medium supplemented with 15 mM ferulate, after which cells were transferred to fresh mediums supplemented with different concentrations of ferulate

Read more

Summary

Introduction

Integration of synthetic metabolic pathways to catabolically diverse chassis provides new opportunities for sustainable production. We established a cellular platform for the production of semivolatile medium-chain α-olefins from lignin-derived molecules: we constructed 1-undecene synthesis pathway in Acinetobacter baylyi ADP1 using ferulate, a lignin-derived model compound, as the sole carbon source for both cell growth and product synthesis. Some microorganisms have evolved the pathways for aromatic catabolism [5,6,7], which provides the opportunity to convert these lignin-derived molecules (LDMs) into different specialized end-products. Acinetobacter baylyi ADP1 is one of the microorganisms that has been reported being able to catabolize various LDMs and even directly depolymerize lignin [8, 9]. A. baylyi ADP1 could be a potential candidate for lignin valorization

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call