Abstract

Synthetic biology aims at the rational design and construction of devices, systems and organisms with desired functionality based on modular well-characterized biological building blocks. Based on first proof-of-concept studies in bacteria a decade ago, synthetic biology strategies have rapidly entered mammalian cell technology providing novel therapeutic solutions. Here we review how biological building blocks can be rewired to interactive regulatory genetic networks in mammalian cells and how these networks can be transformed into open- and closed-loop control configurations for autonomously managing disease phenotypes. In the second part of this tutorial review we describe how the regulatory biological sensors and switches can be transferred from mammalian cell synthetic biology to materials sciences in order to develop interactive biohybrid materials with similar (therapeutic) functionality as their synthetic biological archetypes. We develop a perspective of how the convergence of synthetic biology with materials sciences might contribute to the development of truly interactive and adaptive materials for autonomous operation in a complex environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call