Abstract

Industrial catalysts often consist of transition metals supported on microporous or mesoporous high surface area oxides and are prepared by techniques such as impregnation and ion adsorption. In standard fabrication processes the metal particle size is not well-controlled. In this paper we report a new synthetic route for the production of catalyst materials with more precise control of the metal particle size. Gold nanoparticles encapsulated in mesoporous silica (MCM-41 and MCM-48) served as a model system, although the techniques described are applicable to a wide variety of metals and oxide supports. The samples were characterized by a combination of low-angle powder X-ray diffraction, transmission electron microscopy, N2 porosimetry, infrared spectroscopy, and X-ray absorption near-edge spectroscopy. The results show that the MCM-41 and MCM-48 structures retain their long-range order when metal particles are added; in addition, the size of the channels increases monotonically with metal loading. X-ray...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.