Abstract

BackgroundThis manuscript describes the development of a novel synthetic immunotherapy (HIV-v) composed of four multi-epitope polypeptides targeting conserved regions in the Nef, Rev, Vif and Vpr viral proteins. Immunogenicity and cytotoxicity of HIV-v are discussed.MethodsShort conserved T-cell multi-epitope regions were identified in silico in the HIV proteome. The immunogenicity of the identified HIV-v polypeptides was assessed in vivo by immunisation of C57BLK6 mice transgenic for HLA-A*0201. Splenocytes from immunised animals were exposed in vitro to soluble HIV-v polypeptides or to syngeneic (T1) or allogeneic (Jurkat) cells transfected with these polypeptides. Specific T-cell reactivity was assessed by cell-based IFN-γ ELISA. Virus specific CD3 + CD8+ IFN-γ+ recall responses were also determined by flow cytometry following in vitro exposure of splenocytes from immunised mice to syngeneic (T1) and allogeneic (H9) cells infected with HIV-1 strain IIIB. HIV-v specific antibodies were quantified by ELISA whilst antibody mediated anti-viral immunotherapeutic effect on T1 cells infected with a laboratory adapted and a primary isolate of the HIV-1 virus was assessed in a LDH-based complement mediated lysis assay.ResultsHIV-v elicited antigen-specific IgG and IFN−γ responses against the synthetic polypeptides in the formulation. HIV-v specific T cells recognised polypeptides presented either as soluble antigen or complexed to HLA-A*0201 following natural processing and presentation by syngeneic human T1 cells. Moreover, the CD3 + CD8+ component of the response recognised syngeneic T1 cells naturally infected with HIV-1 in a virus-specific and MHC restricted-manner. The HIV-v specific IgG response was also able to recognise human T1 cells naturally infected with HIV-1 and induce cell death through classic activation of complement.ConclusionsHIV-v induces a vaccine-specific type I immune response characterised by activation of effector CD8+ T cell and antibody responses that recognise and kill human cell lines naturally infected with a laboratory adapted and a primary isolate of the HIV-1 virus. The data supports the hypothesis that alternative HIV protein targets can be effectively used to prime both cellular and antibody immune responses of clinical value in the prevention and treatment of HIV infection.

Highlights

  • This manuscript describes the development of a novel synthetic immunotherapy (HIV-v) composed of four multi-epitope polypeptides targeting conserved regions in the Nef, Rev, Vif and Vpr viral proteins

  • We provide evidence that Human Immunodeficiency virus (HIV)-v induces specific CD8+ T cell and IgG responses capable of recognising and killing a human cell line infected with a laboratory adapted and a primary isolate of the HIV-1 virus

  • Protein sequences from HIV-1 and HIV-2 strains were included in the analysis since our aim was to develop a universal immunotherapy against HIV virus

Read more

Summary

Introduction

This manuscript describes the development of a novel synthetic immunotherapy (HIV-v) composed of four multi-epitope polypeptides targeting conserved regions in the Nef, Rev, Vif and Vpr viral proteins. Immunogenicity and cytotoxicity of HIV-v are discussed. Human Immunodeficiency virus (HIV) is the causative agent of AIDS. Combined antiretroviral therapy has transformed the treatment of HIV/AIDS and extended patients’ lifeexpectancy. The long term-nature of this treatment is associated with severe toxic side-effects, limited compliance, development of resistance and high cost [1,2,3]. The only hope to control the continuous spread of HIV is to develop a vaccine or therapy that it is effective but affordable. In 2011 only 54% out of the 14.8 million people eligible for antiretroviral therapy were receiving it. The UNAIDS estimates that $6.8 billion a year will be required by 2015 to ensure access to treatment, care and support for 15 million people living with HIV/AIDS [4]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.