Abstract

Accreting supermassive black holes can now be observed at the event-horizon scale at millimeter wavelengths. Current predictions for the image rely on hypotheses (fluid modeling, thermal electrons) which might not always hold in the vicinity of the black hole, so that a full kinetic treatment is in order. In this Letter, we describe the first 3D global general-relativistic particle-in-cell simulation of a black-hole magnetosphere. The system displays a persistent equatorial current sheet. Synthetic radio images are computed by ray-tracing synchrotron emission from nonthermal particles accelerated in this current sheet by magnetic reconnection. We identify several time-dependent features of the image at moderate viewing angles: a variable radius of the ring, and hot spots moving along it. In this regime, our model predicts that most of the flux of the image lies inside the critical curve. These results could help promote understanding of future observations of black-hole magnetospheres at improved temporal and spatial resolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.