Abstract

The principal component (PC) approach offers compressions of an image sequence into fewer images and noise suppressing filters. Multiple MR images of the same tomographic slice obtained with different acquisition parameters (i.e., with different TR, TE, and flip angles), time sequences of images in nuclear medicine, and cardiac ultrasound image sequences are examples of such input image sets. In this paper noise relationships of original and linearly transformed image sequences in general, and specifically of original, PC, and PC-filtered images are discussed. As the spinoff, it introduces locally weighted PC transforms and filters, nonlinear PC's, and a single-image based filter for suppression of noise. Examples illustrate increased perceptibility of anatomical/functional structures in PC images and PC-filtered images, including extraction of physiological functional information by PC loading curves. Generally, the more correlated the original images are, the more effective is the PC approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.