Abstract

A synthetic pentasaccharide (SR90107/ ORG31540) representing the antithrombin III (ATIII) binding sequence in heparin is under clinical development for the prophylaxis and management of venous thromboembolism. This pentasaccharide exhibits potent anti-factor Xa (AXa) effects (>750 IU/mg) and does not exhibit any anti-factor IIa (AIIa) activity. Previous reports have suggested that synthetic heparin pentasaccharides are resistant to the digestive effects of heparinase I. To investigate the effect of heparinase I on the AXa activity of pentasaccharide SR90107/ORG31540, graded concentrations (1.25-100 microg/ml) were incubated with a fixed amount of heparinase I (0.1 U/ml). Heparinase I produced a strong neutralizing effect on this pentasaccharide, as measured by AXa activity. This observation led to further studies where high performance liquid chromatography (HPLC) analysis was employed to determine the potential breakdown products of the pentasaccharide. The experiment with the pentasaccharide included incubation (37 degrees C) at 1 mg/ml and exposure to graded concentrations of heparinase I (0.125-1 U/ml). After 30 min of incubation, the enzymatic activity was stopped by heat treatment and the mixture was analyzed using high performance size exclusion chromatography (HPSEC). Heparinase I concentration-dependent cleavage of the pentasaccharide was evident. The breakdown products exhibited a mass of 1,034 d and 743 d, respectively, suggesting the generation of a trisaccharide and a disaccharide moiety. The extinction of a disaccharide moiety in the UV region was high, indicating the presence of a double bond in this molecule. These data clearly suggest that pentasaccharide SR90107/ORG31540 is digestible by heparinase I into its two components. Furthermore, these data support the hypothesis that heparinase I can be used as a neutralizing agent for pentasaccharide overdose. Additionally, a highly methylated analog of the previously mentioned synthetic pentasaccharide. SanOrg34006, which has also been subjected to similar experiments, has shown complete resistance to the depolymerizing function of heparinase I; therefore, its use may be appropriate in chronic situations as a long-acting form of the pentasaccharide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.