Abstract

Neuroscience The human brain contains trillions of synapses within a vast network of neurons. Synapse remodeling is essential to ensure the efficient reception and integration of external stimuli and to store and retrieve information. Building and remodeling of synapses occurs throughout life under the control of synaptic organizer proteins. Errors in this process can lead to neuropsychiatric or neurological disorders. Suzuki et al. combined structural elements of natural synaptic organizers to develop an artificial version called CPTX, which has different binding properties (see the Perspective by Salinas). CPTX could act as a molecular bridge to reconnect neurons and restore excitatory synaptic function in animal models of cerebellar ataxia, familial Alzheimer's disease, and spinal cord injury. The findings illustrate how structure-guided approaches can help to repair neuronal circuits. Science , this issue p. [eabb4853][1]; see also p. [1052][2] [1]: /lookup/doi/10.1126/science.abb4853 [2]: /lookup/doi/10.1126/science.abd4762

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call