Abstract

A synthetic genetic system, based on cross-replicating RNA enzymes, provides a means to evaluate alternative genetic codes that relate heritable information to corresponding molecular function. A special implementation of encoded combinatorial chemistry was used to construct complex populations of cross-replicating RNA enzymes in accordance with a user-specified code that relates genotype and phenotype on a molecule-by-molecule basis. The replicating enzymes were made to undergo self-sustained Darwinian evolution, resulting in the emergence of the most advantageous variants. These included both highly active enzymes that sustained the population as a whole and poorly active enzymes that survived as parasites of the active molecules. This evolutionary outcome was a consequence of the information capacity and fidelity of the genetic code, suggesting how these parameters should be adjusted to implement codes tailored to particular applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.