Abstract

Synthetic directed evolution via localized sequence diversification and the simultaneous application of selection pressure is a promising method for producing new, beneficial alleles that affect traits of interest in diverse species; however, this technique has rarely been applied in plants. Here, we designed, built, and tested a chimeric fusion of T7 RNA Polymerase (RNAP) and deaminase to enable the localized sequence diversification of a target sequence of interest. We tested our T7 RNAP-DNA base editor in <i>Nicotiana benthamiana</i> transient assays to target a transgene expressing <i>GFP</i> under the control of the T7 promoter and observed C-to-T conversions. We then targeted the T7 promoter-driven <i>acetolactate synthase</i> sequence that had been stably integrated in the rice genome and generated C-to-T and G-to-A transitions. We used herbicide treatment as selection pressure for the evolution of the <i>acetolactate synthase</i> sequence, resulting in the enrichment of herbicide-responsive residues. We then validated these herbicide-responsive regions in the transgenic rice plants. Thus, our system could be used for the continuous synthetic evolution of gene functions to produce variants with improved herbicide resistance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.