Abstract
Analyzing the layout of a document to identify headers, sections, tables, figures etc. is critical to understanding its content. Deep learning based approaches for detecting the layout structure of document images have been promising. However, these methods require a large number of annotated examples during training, which are both expensive and time consuming to obtain. We describe here a synthetic document generator that automatically produces realistic documents with labels for spatial positions, extents and categories of the layout elements. The proposed generative process treats every physical component of a document as a random variable and models their intrinsic dependencies using a Bayesian Network graph. Our hierarchical formulation using stochastic templates allow parameter sharing between documents for retaining broad themes and yet the distributional characteristics produces visually unique samples, thereby capturing complex and diverse layouts. We empirically illustrate that a deep layout detection model trained purely on the synthetic documents can match the performance of a model that uses real documents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.