Abstract
Synthetic tethering approaches induced by chemical means offer precise control over protein interactions in cells. They enable the manipulation of when, where, and how proteins interact, making it possible to study their functions, dynamics, and cellular consequences at a molecular level. These methods are versatile, reversible, and adaptable, allowing the dissection of complex cellular processes and the engineering of cellular functions. Here, we describe two chemically induced dimerization systems in the model organism Saccharomyces cerevisiae. Using the autophagy pathway as an example, we show how these approaches can be used to dissect molecular events in cells.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.