Abstract

This paper proposes a procedure of synthetic detection for the location of a change point and outliers in bilinear time series models with a change after an unknown time point. Based on Bayesian framework, we first derive the conditional posterior distribution of the change point and from that distribution estimate the position of the change point. Then we use these results to detect the outliers in the time series before and after that change point via Gibbs sampler algorithm. Our simulation studies show that the proposed procedure is effective.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.