Abstract

We developed a unique method to generate reservoir attributes by creating an artificial core for those wells that have no core, but that have gamma, neutron, and density logs. We examined sedimentary facies distributions, reservoir attributes, and mechanical parameters of the rock for noncored wells to increase the data density and improve the understanding of the reservoir. This method eventually helps to improve high-resolution 3D geocellular models, geomechanical models, and reservoir simulation in reservoir characterization. Artificial or synthetic cores are created using a single curve that builds facies templates using the information from the cores of nearby offset wells, which belong to the same depositional environment. The single curve, called the fine particle volume (FPV), is the average of two shale volumes calculated from the gamma-ray log and from a combination of neutron and density logs. Using facies templates, the FPV curve builds the synthetic core for geocellular modeling and reservoir simulation, and it represents the sedimentary facies distribution in the well with all the reservoir attributes obtained from laboratory data of the original core. The vertical succession of the synthetic core has the characteristics of actual sedimentary facies with reservoir attributes such as porosity, permeability, and other rock properties. The result of creating the synthetic core was validated visually and statistically with the actual cores, and each of the cored wells was considered as a noncored well. The limitation of this method is associated with the accuracy of the logging data acquisition, normalization factors, and facies template selection criteria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call