Abstract
PurposeMagnetic resonance imaging (MRI) provides excellent soft-tissue contrast, which makes it useful for delineating tumor and normal structures in radiation therapy planning, but MRI cannot readily provide electron density for dose calculation. Computed tomography (CT) is used but introduces registration uncertainty between MRI and CT. Previous studies have shown that synthetic CTs (sCTs) can be generated directly from MRI images with deep learning methods. However, mainly high-field MRI images have been validated. This study tested whether acceptable sCTs for MR-only radiation therapy planning can be synthesized using an integrated MR-guided linear accelerator at 0.35T, using MRI images and treatment plans in the liver region. Methods and MaterialsTwo models were investigated in this study: a convolutional neural network (Unet) with conventional mean square error (MSE) loss and a Unet using a secondary convolutional neural network for perceptual loss. A total of 37 cases were used in this study with 10-fold cross validation, and 37 treatment plans were generated and evaluated for target coverage and dose to organs at risk (OARs) in the MSE loss model, perceptual loss model, and original CT. ResultsThe sCTs predicted by the perceptual loss model had improved subjective visual quality compared with those predicted by the MSE loss model, but both were similar in mean absolute error (MAE), peak-signal-to-noise ratio (PSNR), and normalized cross-correlation (NCC). The MAE, PSNR, and NCC for the perceptual loss model were 35.64, 24.11, and 0.9539, respectively, and those for the MSE loss model were 35.67, 24.36, and 0.9566, respectively. No significant differences in target coverage and dose to OARs were found between the sCT predicted by the perceptual loss model or by the MSE model and the original CT image. ConclusionsThis study indicated that a Unet with both MSE loss and perceptual loss models can be used for generating sCT images from a 0.35T integrated MR linear accelerator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.