Abstract

Magnetic Resonance guided Radiotherapy (MRgRT) still needs the acquisition of Computed Tomography (CT) images and co-registration between CT and Magnetic Resonance Imaging (MRI). The generation of synthetic CT (sCT) images from the MR data can overcome this limitation. In this study we aim to propose a Deep Learning (DL) based approach for sCT image generation for abdominal Radiotherapy using low field MR images. CT and MR images were collected from 76 patients treated on abdominal sites. U-Net and conditional Generative Adversarial Network (cGAN) architectures were used to generate sCT images. Additionally, sCT images composed of only six bulk densities were generated with the aim of having a Simplified sCT.Radiotherapy plans calculated using the generated images were compared to the original plan in terms of gamma pass rate and Dose Volume Histogram (DVH) parameters. sCT images were generated in 2s and 2.5s with U-Net and cGAN architectures respectively.Gamma pass rates for 2%/2mm and 3%/3mm criteria were 91% and 95% respectively. Dose differences within 1% for DVH parameters on the target volume and organs at risk were obtained. U-Net and cGAN architectures are able to generate abdominal sCT images fast and accurately from low field MRI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.