Abstract

SummarySyngas fermentation with acetogens is known to produce mainly acetate and ethanol efficiently. Co‐cultures with chain elongating bacteria making use of these products are a promising approach to produce longer‐chain alcohols. Synthetic co‐cultures with identical initial cell concentrations of Clostridium carboxidivorans and Clostridium kluyveri were studied in batch‐operated stirred‐tank bioreactors with continuous CO/CO2‐gassing and monitoring of the cell counts of both clostridia by flow cytometry after fluorescence in situ hybridization (FISH‐FC). At 800 mbar CO, chain elongation activity was observed at pH 6.0, although growth of C. kluyveri was restricted. Organic acids produced by C. kluyveri were reduced by C. carboxidivorans to the corresponding alcohols butanol and hexanol. This resulted in a threefold increase in final butanol concentration and enabled hexanol production compared with a mono‐culture of C. carboxidivorans. At 100 mbar CO, growth of C. kluyveri was improved; however, the capacity of C. carboxidivorans to form alcohols was reduced. Because of the accumulation of organic acids, a constant decay of C. carboxidivorans was observed. The measurement of individual cell concentrations in co‐culture established in this study may serve as an effective tool for knowledge‐based identification of optimum process conditions for enhanced formation of longer‐chain alcohols by clostridial co‐cultures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.