Abstract

A series of distearoylphosphatidylcholine (DSPC) analogues having various branched alkyl chains were synthesized and tested for their abilities to regulate protein kinase C (PKC). The greatest improvement (about 3-fold) in the PKC inhibitory activity over that seen for the parental lipid (i.e., DSPC) was accomplished by substitution of 8-methylstearate at sn-2 and 16-methylstearate at both sn-1 and sn-2 positions of glycerol; substitutions at both sn-1 and sn-2 with 8-methylstearate, on the other hand, caused a decrease (about 4-fold) in its inhibitory activity. Introduction of butyl, phenyl, or keto functions to various positions in the fatty alkyl chain substituted at both sn-1- and sn-2 positions imparted upon the DSPC analogues an ability to potently stimulate PKC to an extent comparable to those attainable by diacylglycerol or phorbol ester; the analogues having substitution only at the sn-2 position, in comparison, had no or reduced stimulatory activity. The butyl, phenyl, and keto analogues of DSPC, as with DSPC itself and its methyl analogues, inhibited PKC at high concentrations. Kinetic analysis indicated that the methyl DSPC analogues inhibited the enzyme competitively with respect to phosphatidylserine (PS; a phospholipid cofactor) and Ca2+. The butyl analogues activated the enzyme without affecting its affinity for PS or Ca2+, indicating a mechanism different from that seen for diacylglycerol or phorbol ester. The inhibitory activity of the methyl DSPC analogues and the stimulatory activity of the butyl DSPC analogues were reduced when PKC was activated by phorbol ester. Both classes of the analogues were unable to compete for the binding of [3H]phorbol dibutyrate to PKC.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.