Abstract
Bacterial cellulose (BC) is a carbohydrate polymer that is widely produced by diverse bacteria with unique structural features and properties. BC has a high water-retention capacity, appealing mechanical properties, and higher purity compared to plant cellulose. Due to these attractive properties, BC has been exploited in many applications, including biomedical treatment, textiles, architecture, and environmental engineering. Recently, taking advantage of synthetic biology concepts and techniques, the integration of genetically engineered microorganisms and BC produces composite materials with intriguing characteristics, for example, responsiveness to stimuli and capability to regenerate. These synthetic biology-inspired BC-based composite materials greatly extend the scopes of applications of BC. In this review, we discuss the construction and application of BC-based composite materials with an emphasis on those produced by genetically engineered microorganisms and by microbial co-culture approaches. We highlight the advantages of the synthetic biology-inspired fabrication strategy of BC-based composites and consider the challenges that need to be addressed by future work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.