Abstract
To bestow cells with novel forms and functions, the goal of synthetic biology, we have developed the unnatural nucleoside triphosphates dNaMTP and dTPT3TP, which form an unnatural base pair (UBP) and expand the genetic alphabet. While the UBP may be retained in the DNA of a living cell, its retention is sequence-dependent. We now report a steady-state kinetic characterization of the rate with which the Klenow fragment of E. coli DNA polymerase I synthesizes the UBP and its mispairs in a variety of sequence contexts. Correct UBP synthesis is as efficient as for a natural base pair, except in one sequence context, and in vitro performance is correlated with in vivo performance. The data elucidate the determinants of efficient UBP synthesis, show that the dNaM-dTPT3 UBP is the first generally recognized natural-like base pair, and importantly, demonstrate that dNaMTP and dTPT3TP are well optimized and standardized parts for the expansion of the genetic alphabet.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.