Abstract

Biocontainment comprises any strategy applied to ensure that harmful organisms are confined to controlled laboratory conditions and not allowed to escape into the environment. Genetically engineered microorganisms (GEMs), regardless of the nature of the modification and how it was established, have potential human or ecological impact if accidentally leaked or voluntarily released into a natural setting. Although all evidence to date is that GEMs are unable to compete in the environment, the power of synthetic biology to rewrite life requires a pre-emptive strategy to tackle possible unknown risks. Physical containment barriers have proven effective but a number of strategies have been developed to further strengthen biocontainment. Research on complex genetic circuits, lethal genes, alternative nucleic acids, genome recoding and synthetic auxotrophies aim to design more effective routes towards biocontainment. Here, we describe recent advances in synthetic biology that contribute to the ongoing efforts to develop new and improved genetic, semantic, metabolic and mechanistic plans for the containment of GEMs.

Highlights

  • All biological processes can be altered to establish systems that do not exchange information with nature, be it genetic information storage, its maintenance, protein translation or even the cell’s metabolism. These orthogonal systems can be the basis of a new generation of biological containment strategies where both organism and information are isolated from the environment and unable to interact with biology

  • Leticia Torres contributed to section on genetic containment

  • Antje Kruger contributed to section on semantic containment

Read more

Summary

Introduction

All biological processes can be altered to establish systems that do not exchange information with nature, be it genetic information storage, its maintenance, protein translation or even the cell’s metabolism. These orthogonal systems can be the basis of a new generation of biological containment strategies where both organism and information are isolated from the environment and unable to interact with biology.

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call