Abstract

Biological chemical production has gained traction in recent years as a promising renewable alternative to traditional petrochemical based synthesis. Of particular interest in the field of metabolic engineering are photosynthetic microorganisms capable of sequestering atmospheric carbon dioxide. CO2 levels have continued to rise at alarming rates leading to an increasingly uncertain climate. CO2 can be sequestered by engineered photosynthetic microorganisms and used for chemical production, representing a renewable production method for valuable chemical commodities such as biofuels, plastics, and food additives. The main challenges in using photosynthetic microorganisms for chemical production stem from the seemingly inherent limitations of carbon fixation and photosynthesis resulting in slower growth and lower average product titers compared to heterotrophic organisms. Recently, there has been an increase in research around improving photosynthetic microorganisms as renewable chemical production hosts. This review will discuss the various efforts to overcome the intrinsic inefficiencies of carbon fixation and photosynthesis, including rewiring carbon fixation and photosynthesis, investigating alternative carbon fixation pathways, installing sugar catabolism to supplement carbon fixation, investigating newly discovered fast growing photosynthetic species, and using new synthetic biology tools such as CRISPR to radically alter metabolism.

Highlights

  • It is well established that rising atmospheric CO2 levels are the primary cause for unprecedented climate change impacting the globe (Solomon et al, 2009)

  • The focus of this review will be on the recent methods employed to overcome the supposed shortcomings of photosynthetic organisms ranging from rewiring carbon metabolism and photosynthesis, introducing additional carbon substrates, generating other chassis organisms capable of superior carbon sequestration, studying faster growing variants of cyanobacteria, and developing new tools via synthetic biology

  • While many challenges remain and must be overcome to enable widespread adoption of photosynthetic chemical production hosts, the above studies suggest that there are myriad avenues of research that can get closer to this goal

Read more

Summary

Synthetic Biology Approaches for Improving Chemical Production in Cyanobacteria

Biological chemical production has gained traction in recent years as a promising renewable alternative to traditional petrochemical based synthesis. Of particular interest in the field of metabolic engineering are photosynthetic microorganisms capable of sequestering atmospheric carbon dioxide. CO2 can be sequestered by engineered photosynthetic microorganisms and used for chemical production, representing a renewable production method for valuable chemical commodities such as biofuels, plastics, and food additives. There has been an increase in research around improving photosynthetic microorganisms as renewable chemical production hosts. This review will discuss the various efforts to overcome the intrinsic inefficiencies of carbon fixation and photosynthesis, including rewiring carbon fixation and photosynthesis, investigating alternative carbon fixation pathways, installing sugar catabolism to supplement carbon fixation, investigating newly discovered fast growing photosynthetic species, and using new synthetic biology tools such as CRISPR to radically alter metabolism

INTRODUCTION
Rewiring Photosynthetic Metabolism
Genome Engineering Tools
Findings
CONCLUDING REMARKS
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call