Abstract

paper real data was used to test the utility of synthetic aperture (SA) ultrasound imaging to overcome the limitation of conventional ultrasound image which include decreasing the frame rate and single transmit focusing. The images are reconstructed by using different types of transmission and used to test the effect of signal to noise ratio (SNR). The results show that increasing the number of aperture elements improves the SNR. This means that overcoming the problem of low SNR can be achieved by replacing single element transmission by simultaneous excitation of multi-element sub- apertures. 24-tap FIR Hilbert transformed was designed with acceptable normalized RMSE with the analytical form of the signal. The images were reconstructed with and without the FIR Hilbert transform filter. Synthetic aperture imaging is shown to have potential for alleviating the problem of frame rate limitation and single transmit focusing. The results were compared to image reconstructed using linear array image reconstruction. On the other hand, it is also shown to have several problems associated with its practical implementation in terms of penetration depth, flow estimation, and implementation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call