Abstract

The vortex electromagnetic (EM) wave carrying orbital angular momentum (OAM) offers a new degree of freedom for synthetic aperture radar (SAR) imaging. Because vortex EM waves have helical wavefronts, the vortex EM wave-based SAR echo contains the three-dimensional (3D) information of the target. In this paper, an OAM-based synthetic aperture radar interferometry (InSAR) technique is proposed to obtain 3D target information accurately without the existence of baseline. First, a vortex EM waves' SAR imaging model is established, and an improved range-Doppler algorithm is proposed correspondingly. Subsequently, the scheme of the OAM-based InSAR without the physical baseline is proposed. Compared with the conventional InSAR, the OAM-based InSAR can avoid the baseline decorrelation and reduce the requirement of the platform. Besides, the processing procedure of the OAM-based InSAR is simplified, which avoids the image registration and the interferogram flattening. The simulation results demonstrate the effectiveness of the proposed technique. Besides, the height estimation accuracy of the OAM-based InSAR was analyzed, in terms of interferometric phase error and OAM mode error. The height estimation accuracy can be improved by increasing the OAM mode difference appropriately. The OAM, which is completely independent of time, frequency, and polarization, offers a new scheme for the InSAR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.