Abstract

Electromagnetic imaging enables researchers and engineers to assess the surface and subsurface condition of concrete structures using radar and microwave sensors. Among existing radar imaging methods, synthetic aperture radar (SAR) imaging offers flexible resolution for various purposes in condition assessment. In this paper, two novel SAR image processing techniques are reported for the subsurface condition assessment of FRP(fiber reinforced polymer)-strengthened concrete systems; mathematical morphology (MM) and the K-R-I transform. Glass FRP (GFRP) and carbon CFRP (CFRP) strengthened concrete cylinders are used as examples. From our experimental results, it is found that both techniques are capable of quantifying SAR images for condition assessment. It is also found that Euler’s number and the coefficient of correlation of K-R-I curves of SAR images can be used for monitoring subsurface changes in FRP-concrete systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.