Abstract
This paper describes a synthetic aperture common-path digital holographic microscopy through phase-shifting in a rotating spiral phase filter (SPF) to strengthen axial phase accuracy and fully utilize frequency coverage to improve of the spatial resolution. A phase-type liquid crystal on a silicon spatial light modulator was employed to generate an SPF on the Fourier plane of the digital holographic microscopy system. Subsequently, the scattering wave passing through the spiral phase plate and the reference wave generated through the center of phase plate as a spatial filter were used for the interference process, thereby completing the recording of the on-axis digital hologram. The common-path digital holographic microscopy system integrated with synthetic aperture imaging can be applied for Fresnel hologram recording and numerical focusing on objects without being affected by environmental vibration and coherence, thereby improving the spatial resolution and axial phase accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.