Abstract

Two synthetic approaches to the formation of bismuth(III) carboxylates have been explored and compared. Ph(3)Bi was reacted with a series of carboxylic acids (RCO(2)H) of varying pK(a) and functionality (R = PhCH[double bond, length as m-dash]CH, o-MeOC(6)H(4), m-MeOC(6)H(4), o-H(2)NC(6)H, o-O(2)NC(6)H(4), p-O(2)NC(6)H(4), 2-(C(5)H(4)N)) under reflux conditions in toluene and solvent-free. The thermochemical profiles of the solvent-free reactions were also studied by DSC-TGA. All reactions produced the tri-substituted bismuth carboxylates in comparable yields and purity with the exceptions of picolinic acid and p-nitrobenzoic acid. 2-Picolinic acid exclusively formed the di-substituted complex, [PhBi(2-(C(5)H(4)N)CO(2))(2)](4), by both methods, while p-nitrobenzoic acid gave the tri-substituted complex through reflux and the di-substituted complex under solvent-free conditions. Two of the complexes were structurally authenticated by single crystal X-ray diffraction: [PhBi(2-(C(5)H(4)N)CO(2))(2)](4) is tetrameric formed through five membered chelate rings involving the pyridyl N and O(-C) rather than the less stable carboxylate (-CO(2)) chelates, while [Bi(o-MeOC(6)H(4)CO(2))(3)](infinity), is a polymer in which dimeric units, constructed around two chelating and one unsymmetrical bridging carboxylate on each Bi centre, are then joined together through longer intermolecular Bi-O bridging bonds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.