Abstract

Various dienes and a triene can be regioselectively diaminated at the internal double bond with good yields and high diastereoselectivity using di-tert-butyldiaziridinone (5) as the nitrogen source and Pd(PPh(3))(4) (1-10 mol %) as the catalyst. Kinetic studies with (1)H NMR spectroscopy show that the diamination is first-order in total Pd catalyst and inverse first-order in PPh(3). For reactive dienes, such as 1-methoxybutadiene (6g) and alkyl 1,3-butadienes (6a, 6j), the diamination is first-order in di-tert-butyldiaziridinone (5) and zero-order in the olefin. For olefins with relatively low reactivity, such as (E)-1-phenylbutadiene (6b) and (3E,5E)-1,3,5-decatriene (6i), similar diamination rates were observed when 3.5 equiv of olefins were used. Pd(PPh(3))(2) is likely to be the active species for the insertion of Pd(0) into the N-N bond of di-tert-butyldiaziridinone (5) to form a four-membered Pd(II) complex (A), which can be detected by NMR spectroscopy. The olefin complex (B), formed from intermediate A via ligand exchange between the olefin substrate and the PPh(3), undergoes migratory insertion and reductive elimination to give the diamination product and regenerate the Pd(0) catalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.