Abstract

Rhamnolipids secreted by Pseudomonas aeruginosa are required for the bacteria to form biofilm efficiently and form biofilm with internal structures including pores and channels. In this work, we explore the effect of a class of synthetic analogs of rhamnolipids at controlling (promoting and inhibiting) the biofilm formation activities of a non-rhamnolipid-producing strain – rhlA – of P. aeruginosa. This class of rhamnolipid analogs is known to modulate the swarming motilities of wild-type PAO1 and rhlA mutant, but its effect on biofilm formation of rhlA mutant is unknown. We show that small structural details of these molecules are important for the bioactivities, but do not affect the general physical properties of the molecules. The bioactive synthetic analogs of rhamnolipids promote biofilm formation by rhlA mutant at low concentrations, but inhibit the biofilm formation at high concentrations. To explore the internal structures formed by the biofilms, we first demonstrate that wild-type biofilms are formed with substantial topography (hills and valleys) when the sample is under shaking conditions. Using this observation as a comparison, we found that synthetic analogs of rhamnolipids promoted structured (porous) biofilm of rhlA mutant, at intermediate concentrations between the low ones that promoted biofilm formation and the high ones that inhibited biofilm formation. This study suggests a potential chemical signaling approach to control multiple bacterial activities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.