Abstract

The development of safe vectors for gene therapy requires fail-safe mechanisms to terminate therapy or remove genetically altered cells. The ideal "suicide switch" would be nonimmunogenic and nontoxic when uninduced and able to trigger cell death independent of tissue type or cell cycle stage. By using chemically induced dimerization, we have developed powerful death switches based on the cysteine proteases, caspase-1 ICE (interleukin-1beta converting enzyme) and caspase-3 YAMA. In both cases, aggregation of the target protein is achieved by a nontoxic lipid-permeable dimeric FK506 analog that binds to the attached FK506-binding proteins, FKBPs. We find that intracellular cross-linking of caspase-1 or caspase-3 is sufficient to trigger rapid apoptosis in a Bcl-xL-independent manner, suggesting that these conditional proapoptotic molecules can bypass intracellular checkpoint genes, such as Bcl-xL, that limit apoptosis. Because these chimeric molecules are derived from autologous proteins, they should be nonimmunogenic and thus ideal for long-lived gene therapy vectors. These properties should also make chemically induced apoptosis useful for developmental studies, for treating hyperproliferative disorders, and for developing animal models to a wide variety of diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.