Abstract

For quantitative neuroimaging studies using multi-echo gradient echo (mGRE) images, additional T1-weighted magnetization prepared rapid gradient echo (MPRAGE) images are often acquired to supplement the insufficient morphometric information of mGRE for tissue segmentation which require lengthened scan time and additional processing such as image registration. This study investigated the feasibility of generating synthetic MPRAGE images from mGRE images using a deep convolutional neural network. Tissue segmentation results derived from the synthetic MPRAGE showed good agreement with those from actual MPRAGE (DSC = 0.882 ± 0.017). There was no statistically significant difference between the mean susceptibility values obtained with the regions of interest from synthetic and actual MPRAGEs and high correlation between the two measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call