Abstract

Chaotic waveforms are natural information carriers since a correspondence can be established between the symbolic dynamics of a chaotic oscillator and the symbols of a message. Message symbols can be efficiently encoded in a chaotic waveform by applying vanishingly small perturbations to an oscillator to guide its symbolic dynamics to follow a desired course. Recently, two chaotic hybrid dynamical systems were shown to have matched filters enabling robust reception of chaotic communication waveforms in the presence of noise. The first of these, the exact shift oscillator, produces waveforms with desirable properties similar to antipodal signaling, but a physical implementation may be difficult to control using small perturbations. The second oscillator, the exact folded-band oscillator, produces less optimal waveforms but is more easily controlled. Here we introduce a method for generating waveforms of the exact shift oscillator by summing waveforms from a bank of easily controlled exact folded-band oscillators. We show that any solution of the exact shift oscillator can be so constructed using only three folded-band oscillators. Thus, this scheme allows us to realize the advantages of both chaotic systems while overcoming their individual disadvantages, thereby enabling practical chaos communications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call