Abstract

IntroductionTitanium dioxide nanoparticles (TiO2 NPs) have shown tremendous potential in targeted drug-delivery applications. Among various mechanisms, magnetically guided transport of drugs is one such technique for the said purpose. TiO2 NPs being diamagnetic or sometimes exhibiting very weak ferromagnetism can be modified by treating them with suitable magnetic materials.MethodsRutile TiO2 NPs were synthesized and doped with Iron Supplement FericipXT and rare-earth metals like cerium, erbium and neodymium via sol–gel technique. FericipXT-coated rutile TiO2 NPs were synthesized in three different core-shell ratios (1:3, 1:1 and 3:1). The resulting samples were characterized via X-ray Diffraction (XRD), Vibrating Sample Magnetometer (VSM) and High-Resolution Transmission Electron Microscopy (HR-TEM).ResultsXRD of FericipXT-doped TiO2 NPs showed a rutile phase for 1% and 3% doping; however, only a small fraction of the maghemite phase was obtained for 5% doping. The XRD plots of Ce-doped, Er-doped and Nd-doped TiO2 NPs showed a variety of phases of TiO2 NPs (such as anatase/rutile/mixed) along with the oxide phases of the corresponding rare-earth metal. The presence of various iron titanium oxides and iron oxides was found in core-shell NPs. HR-TEM images confirmed the formation of 1:3, 1:1 and 3:1 core-shell TiO2 NPs. VSM studies showed that the resulting NPs depicted magnetism in the form of superparamagnetism, ferromagnetism and even paramagnetism.DiscussionThe doping to 3% does not affect the original phase of the resulting TiO2 NPs as depicted from the XRD; however, a doping of 5% and more resulted in extra phases corresponding to the dopant added. FericipXT was loaded over TiO2 NPs in amorphous form. Among all the samples synthesized, FericipXT-coated TiO2 NPs demonstrated the best magnetic ability. It was deduced that coating with a magnetic material drastically improves the magnetic character of the host NPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.