Abstract
Topological edge-reconstruction occurs in hole-conjugate states of the fractional quantum Hall effect. The frequently studied filling factor, ν = 2/3, was originally proposed to harbor two counter-propagating modes: a downstream v = 1 and an upstream v = 1/3. However, charge equilibration between these two modes always led to an observed downstream v = 2/3 charge mode accompanied by an upstream neutral mode. Here, we present an approach to synthetize a v = 2/3 edge mode from its basic counter-propagating charged constituents, allowing a controlled equilibration between the two counter-propagating charge modes. This platform is based on a carefully designed double-quantum-well, which hosts two populated electronic sub-bands (lower and upper), with corresponding filling factors, vl and vu. By separating the 2D plane to two gated intersecting halves, each with different fillings, counter-propagating chiral modes can be formed along the intersection line. Equilibration between these modes can be controlled with the top gates’ voltage and the magnetic field.
Highlights
Topological edge-reconstruction occurs in hole-conjugate states of the fractional quantum Hall effect
In the quantum Hall effect (QHE) regime, charge propagation takes place via downstream chiral edge modes while the bulk is insulating
In the integer QHE (IQHE), the number of downstream edge modes is equal to the number of occupied “spin-split” Landau levels (LLs); each contributes a single edge mode
Summary
Topological edge-reconstruction occurs in hole-conjugate states of the fractional quantum Hall effect. A 2D plot of the longitudinal resistance, Rxx, of the upper region (measured when the adjacent region is pinched off), is plotted as function of the magnetic field B and its top-gate voltage, Vg1 (Fig. 2b, c).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.