Abstract

The zinc-naproxen complex as a nano-drug (NanoD) was synthesized successfully via effective ultrasound-assisted processes. The chemicophysical properties of the NanoD were determined using FT-IR, XRD, SEM, DLS, and EDX mapping analyses. The results confirmed the formation of the 55 nm NanoD laminates. The interaction of the obtained NanoD with calf thymus deoxyribonucleic acid (CT-DNA) was studied as well. Structural and topography changes of DNA in interaction with the NanoD were investigated by atomic force microscopy (AFM). The results of electronic absorption spectroscopy, the DNA-viscosity studies, and competition fluorescence spectroscopy showed that CT-DNA binds to the NanoD through the intercalative binding mode. The data of AFM analysis indicated swollen CT-DNA upon interaction with the NanoD. The in vitro investigation of cytotoxicity of the NanoD on HT-29, Hep G2, and B16–F10 cancer cells as well as normal HFF-1 cells. The obtained results demonstrated high cytotoxicity activity of the NanoD than that of cisplatin in the HT-29 cell line, especially at lower concentrations. On the B16–F10 cell line at lower concentrations (up to 8 μg mL−1), it is comparable to cisplatin and on the Hep G2 cell line and normal HFF-1 cell line at all concentrations, cytotoxicity of cisplatin is more than NanoD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call