Abstract
The synthesization and characterization of a new environmental functional material-sulfonic cellulose - were studied in this paper. The preparation conditions were optimized through an orthogonal experiment. The modified cellulose was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscope (SEM). The adsorption rules of cationic organic pollutants and heavy metal ions by this new material were discussed. Regeneration and recycling performances of the sulfonic cellulose were also investigated. At the temperature of 323 K, sulfonic cellulose was prepared by grafting 2-acrylamido-2-methylpropane sulfonic acid (AMPS) onto alkali-treated cellulose for 4 h with the employing of ceric ammonium nitrate as initiator. The mass ratio of AMPS to cellulose was 3:1 and the concentration of ceric ammonium nitrate was 63.8 mmol/L. The sulfur content of sulfonic cellulose was 7.32 wt%. The peaks of 1,303 and 1,159 cm⁻¹ in IR suggested the existence of the sulfonic group in sulfonic cellulose. The XRD and SEM results showed that the crystallinity decreased while the specific surface area increased after modification. Batch adsorption results showed that sulfonic cellulose had a favorable adsorption capacity for model contaminants at pH 6.0-7.0. The adsorption process was endothermic and reached equilibrium in 180 min. The adsorption rules of cationic organic pollutants and heavy metal ions indicated that sulfonic cellulose had high adsorption capacity for the cationic dyes with a coplanar macromolecule structure and organic compounds carrying the amino group. Under room temperature, 1.0 mol/L HCl can be used as a desorption solution and the equilibrium adsorption capacity had little decrease (less than 7%) after six adsorption-desorption cycles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.