Abstract

A simplified method with much lower time and energy costs is presented for the rapid synthesis of low thermal expansion materials of CaZr4P6O24, SrZr4P6O24 and their solid solution Ca0.5Sr0.5Zr4P6O24. The coefficients of thermal expansion of CaZr4P6O24, SrZr4P6O24 and Ca0.5Sr0.5Zr4P6O24 are measured to be -1.45×10-6, 2.1×10-6 and 0.26×10-6, respectively. Raman spectroscopic study confirms the formation of the solid solution of Ca0.5Sr0.5Zr4P6O24 though its symmetric and asymmetric stretching modes are obviously broadened with respect to those of CaZr4P6O24 and SrZr4P6O24 due to the lattice deformation by incorporation of Ca2+ and Sr2+ with different cation size. The shifts of the asymmetric stretching Raman modes and the librational/translational modes with temperature in Ca0.5Sr0.5Zr4P6O24 are between those in CaZr4P6O24 and SrZr4P6O24, suggesting a cancelling effect of Ca2+ and Sr2+ cations in the thermal expansion of Ca0.5Sr0.5Zr4P6O24.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.