Abstract

ABSTRACTFabrication of hybrid composite of nickel oxide (NiO) combined with oil palm empty fruit bunch (OPEFB) reinforced with polycaprolactone (PCL) has been done by using thermal Haake blending machine, which ensured mixture homogeneity. All hybrid composites' characterizations were carried out using X‐ray diffraction (XRD), Fourier transform infrared spectrometry, differential thermogravimetry, thermogravimetric analysis, and scanning electron microscopy. The results showed that the XRD profile patterns of the composites clearly changed as the filler loading amount was increased. Fourier transform infrared spectra illustrated a slight change in the frequencies and positions of the peaks after adding NiO, indicating that some interactions occurred between C=O and O–H or among the fiber, NiO, and PCL. The microwave electromagnetic properties, such as reflection loss (dB), relative complex permittivity (εr =–j), and permeability (−j) were calculated at various microwave frequencies in the X‐band (8–12 GHz) range. It was observed that the thermal stability, magnetic, and dielectric properties of NiO:OPEFB:PCL composites were modified significantly with NiO addition. This enables the new hybrid composites to be used as engineering materials in the microwave applications. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 46998.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.