Abstract

Lead salt of 4-amino-3,5-dinitropyrazole (PDNAP) was synthesized from 4-amino-3,5-dinitropyrazole by the process of metathesis reaction, and its structure was characterized by IR, element analysis, TG, and DSC. The thermal decomposition kinetics and mechanism were studied by means of different heating rate differential scanning calorimetry (DSC) and thermolysis in situ rapid-scan FTIR simultaneous. The effects of PDNAP as an energetic combustion catalyst on the combustion performance of the solid propellant were studied. The results show that the peak temperature is 319.2 °C on DSC curve. The kinetic equation of major exothermic decomposition reaction is $$ \frac{{\text{d}}\alpha}{{\text{d}}T} = \frac{{10^{15.45} }}{\beta }4(1 - \alpha )[ - \ln \left( {1 - \alpha } \right)]^{{{3 \mathord{\left/ {\vphantom {3 4}} \right. \kern-0pt} 4}}} \exp ({{ - 1.972 \times 10^{5} } \mathord{\left/ {\vphantom {{ - 1.972 \times 10^{5} } {RT}}} \right. \kern-0pt} {RT}}). $$ The PDNAP is shown by IR spectroscopy to convert to PbO during the decomposition process. Combustion experiments show PDNAP can reduce the burning rate pressure exponent of the double-base or composite-modified double-base propellant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.