Abstract
Bluish-green photoluminescence from calcium 8-hydroxyquinolate (Caq(2)) powder, synthesized by a co-precipitation route, and a blended Caq(2):PMMA thin film is reported. The film was obtained by mixing the Caq(2) powder with PMMA (Polymethylmethacrylate) in a chloroform solution. X-ray diffraction analyses confirm the formation of the Caq(2) powder and thin film. Further structural elucidation was carried out using Fourier transform infrared spectroscopy (FTIR) in which the stretching frequencies of the Caq(2) bonds were determined. Bluish-green photoluminescence with a maximum at 480 nm was observed from the powder and the emission was red-shift by 10 nm in the case of the thin film. The UV-vis absorption bands were split and shifted due to different orientations of the Caq(2) molecules in both the powder and thin film. It was confirmed by thermogravimetric (TGA) and differential thermal analysis (DTA) that the Caq(2) powder was stable up to ≈ 380 °C. Atomic force microscopy images showed the continuous distribution of the Caq(2) atoms in the PMMA thin film. X-ray photoelectron spectroscopy data was used to estimate the binding energies of the chemical bonding in the Caq(2) powder complex. The optical properties of the Caq(2) powder and thin film were evaluated for possible applicable in organic light emitting devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.