Abstract

A series of α-aminopyridines in the form of (2,6-C(6)H(3)N)(R(1))(CHR(2)NR(3)R(4)) (R(1) = R(2) = H R(3) = H R(4) = (i)Pr (L1a), R(4) = (t)Bu (L1b), R(4) = Ph (L1c), R(4) = 2,6-Me(2)C(6)H(3) (L1d), R(4) = 2,6-(i)Pr(2)C(6)H(3) (L1e), R(1) = R(2) = H R(3) = R(4) = Et (L1f), R(1) = H R(2) = Me R(3) = H R(4) = (i)Pr (L2a), R(4) = Ph (L2c), R(4) = 2,6-Me(2)C(6)H(3) (L2d), R(4) = 2,6-(i)Pr(2)C(6)H(3) (L2e), R(1) = Me R(2) = H R(3) = H R(4) = 2,6-(i)Pr(2)C(6)H(3) (L3e)) and β-aminopyridines in the form of (2-C(6)H(4)N)(CH(2)CH(2)NR(1)R(2)) (R(1) = H R(2) = (i)Pr (4a), R(2) = (t)Bu (L4b), R(1) = R(2) = Et (L4f)) have been prepared. Their corresponding halonickel complexes 1a-4f are synthesized by ligand substitution from (DME)NiBr(2) and the molecular structures are characterized. Four types of coordination modes include four-coordinate mononuclear species with one ligand, five-coordinate mononuclear species with two ligands, five-coordinate dinuclear species with two ligands, and a six-coordinate polymeric framework were determined by X-ray crystallography. Using methylaluminoxanes (MAO) as the activator, the nickel complexes can catalyze ethylene polymerization under moderate pressure and ambient temperature. The activity reaches 10(5) g PE mol(-1) Ni h. The PE products with high branching and high crystallinity have M(n) ~ 10(3) with PDI < 2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call