Abstract

The synthesis, structures, and properties of a π-extended double helicene 1 are described. This double helicene 1 was synthesized by a four-fold oxidative C-H biphenylation of naphthalene followed by the Scholl reaction or via five steps including the Suzuki-Miyaura cross-coupling reaction and the Scholl reaction. Due to the two helical substructures, 1 has three isomers, i.e., two enantiomers in a twisted form [(P,P) and (M,M)] and one diastereoisomer in a meso form. X-ray crystallographic analysis of the twisted isomers (twisted-1) revealed a tightly offset packing pattern of (P,P)- and (M,M)-twisted isomers, affording a three-dimensional lamellar stacking structure. A high isomerization barrier (43.5 kcal mol(-1)) and the relative thermal stability of twisted-1 isomer over meso-1 by 0.9 kcal mol(-1) were estimated by DFT calculations. The three isomers were successfully separated by chiral HPLC and characterized by circular dichroism spectroscopy as well as by TD-DFT studies. Electronic state variation resulting from the molecular geometry difference between the two diastereoisomers (twisted-1 and meso-1) was observed by UV-vis absorption and fluorescence spectra.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call