Abstract
Xanthine oxidase (XO) is an enzyme that contains molybdenum at the active site and catalyzes the oxidation of purine bases to uric acid. Even though XO inhibitors are widely used for the treatment of hyperuricemia and gout, only very few such compounds are clinically used as drugs for the treatment of these diseases. Given the unique physicochemical properties of tropolone, i.e., its chelating effect and the pKa value that is similar to that of carboxylic acid, we have synthesized 22 5-arylazotropolone derivatives as potential XO inhibitors. In vitro enzyme-inhibitory assays for XO revealed that 3-nitro derivative 1j showed the most potent XO inhibitory activity, which is by one order of magnitude more potent than allopurinol. An enzyme-kinetic study revealed that 1j inhibited the production of uric acid by XO both competitively and non-competitively. A docking-simulation study of 1j with XO suggested that the carbonyl and hydroxyl groups of the tropolone ring interact with the hydroxy group that acts as a ligand for molybdenum and the amino acid residues around the active site of XO.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.