Abstract

Good quality single crystals of 4-hydroxy tetramethylpiperazinium picrate (TMPP) were grown by slow evaporation solution growth method at room temperature. The average dimensions of the grown crystals were 0.6 × 0.2 × 0.2 cm3. The solubility of the compound was estimated using methanol and acetone. The elemental analysis confirms the formation of the compound in the stoichiometric proportion. The UV-visible transmittance study indicates that the crystal possesses minimum transmittance at 370 nm and no absorption at 470–900 nm. The Bragg peaks obtained in the powder X-ray diffraction pattern confirm its crystallinity. The thermal behaviour of the crystal was investigated using thermogravimetric (TG) and differential thermal analysis (DTA) techniques. The structure of the compound was determined by using single crystal X-ray diffraction method. The compound was found to be crystallize in the monoclinic space group P2(1)/c (a = 6.9513(8)Å, b = 11.8016(14)Å, c = 22.018(2)Å, α = 90.00°, β = 92.575(2)°, γ = 90.00°). The thermal anomalies observed in the differential scanning calorimetry (DSC) heating and cooling cycles indicate the occurrence of first order phase transition. Fourier transform infrared (FTIR) and polarized Raman spectral analyses were used to confirm the presence of various functional groups in the compound. The nonlinear optical property (NLO) of the crystal was analysed by Kurtz-Perry powder technique and found that the compound has SHG efficiency 1.5 times greater that of potassium dihydrogen phosphate (KDP). A picric acid salt, 4-hydroxy tetramethylpiperazinium picrate was synthesized and crystallized. Thermal and spectral characterizations were carried out. The XRD structure determination indicated that the compound crystallized in monoclinic system with space group P2(1)/c. The SHG efficiency of the crystal was 1.5 times greater than that of KH2DPO4.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.