Abstract

A series of promising luminescent materials, nonlinear optical crystals, and physiologically active compounds – aryl(oxy)(sulfanyl)(sulfonyl)acetates of guanidine (A) of unknown type was synthesized. Various functional groups present in (A) were identified using FTIR spectroscopy. 1H and 13C NMR spectral studies further confirm the molecular structure (A). Crystals of guanidinium 4-chlorophenyl(sulfanyl)acetate (1) and guanidinium 4-chlorophenyl(sulfonyl)acetate (2) were successfully grown. They belong to the same lowest symmetry category, but to different crystal systems: monoclinic (1) and orthorhombic (2).It has been established that intrinsic optical absorption begins at a wavelength of ∼ 290 nm for crystalline compound (1) and ∼ 335 nm for crystal (2). The intrinsic luminescence spectrum of crystal (1) includes two bands with maxima at 300 and 515 nm. In the intrinsic luminescence spectrum of crystal (2), only one band is observed with a maximum at 350 nm. Such luminescence in both crystals is excited in the intrinsic absorption bands, as well as by X-ray radiation. In addition, in the near ultraviolet and throughout the visible region, where optical absorption is not detected (it is very weak), low-inertia (less than 10 ns) rather intense luminescence of uncontrolled impurity-defect centers is excited.The spectral bands of optical absorption, photo- and X-ray luminescence discovered in experiments were systematized using a diagram of energy levels and quantum transitions in crystals and defect centers of the compounds under study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.