Abstract
A high-silica zeolite (Si/Al = 7.1) with the STI framework topology, denoted TNU-10, has been synthesized in the presence of 1,4-bis(N-methylpyrrolidinium)butane and Na(+) cations as structure-directing agents, and its structure in the proton form has been refined against laboratory powder X-ray data in space group Fmmm (a = 13.533(1) A, b = 17.925(2) A, c = 17.651(2) A). The space group symmetry is supported by electron diffraction and energy minimization studies. The as-made and proton form of TNU-10 are extensively characterized by elemental and thermal analyses, scanning electron microscopy, N(2) adsorption, multinuclear solid-state NMR, IR, and temperature-programmed desorption of ammonia, and the location of the organic structure-directing agent in the channel system is determined by molecular modeling. The catalytic properties of H-TNU-10 and Co-TNU-10 are evaluated for the skeletal isomerization of 1-butene to isobutene and the selective reduction of NO with methane, respectively. When compared to H-ferrierite, a low selectivity to isobutene is observed for H-TNU-10. However, it is found that Co-TNU-10 exhibits a maximum NO conversion of 93% at 823 K under conditions of high concentrations of methane (16,000 ppm) and water vapor (10%) and in the presence of 2.6% O(2), which is considerable higher than even the value (74%) obtained from Co-ferrierite, known as the best catalyst for this reaction, under the identical conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.