Abstract

Focusing on the important biological functions of metallo-enzymes and metallo-therapeutics in living world, this research work demonstrates the synthesis, crystal structure, supramolecular architecture, 4-methylcatechol oxidation and bactericidal activity of an interesting zinc-Schiff base complex, [Zn(HL)2Cl2] (1), [Schiff base (HL) = 2-(2-methoxybenzylideneamino)phenol]. Crystal structure analysis of the zinc-Schiff base reveals that zinc centre exists in a distorted tetrahedral geometry. The Schiff base adopts three donor centres, however it gets protonated to exist in a zwitter ionic form and behaves as a monodentate coordinator in 1. This zinc-Schiff base complex has been examined towards the bio-mimetic oxidation of 4-methylcatechol (4-MC) in methanol and portrays its good efficacy with good turnover number, 1.45 × 103 h−1. Electro-chemical study, electron paramagnetic resonance analysis and electrospray ionization mass spectrometry results for the zinc-Schiff base complex in presence of 4-MC ensures that the catalytic reaction undergoes through enzyme-substrate binding, and generation of radical in the course of catalysis drives the catalytic oxidation of 4-MC. Antibacterial study has also been performed against few clinical pathogens (Bacillus SP, Enterococcus, and E. coli). Scanning electron microscope and EDAX analysis for the pathogen with little dose of zinc complex confirms the destruction of bacterial cell membrane with 1.44% occurrence of zinc in the selected zone of inhibition area. This observation holds a great promise to develop future antibacterial agent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.