Abstract
The synthesis, structure, and magnetic behavior of the complexes Cu(qnx)Br(2) (1), Cu(2,3-dmpz)Br(2) (2), Cu(qnx)Cl(2) (3), and Cu(2,3-dmpz)Cl(2) (4) (qnx = quinoxaline, dmpz = dimethylpyrazine) are described. Both X-ray structural data and fitting of the magnetic data suggest that the compounds are well-described as strong-rung, two-leg magnetic ladders with J(rung) ranging from -30 K to -37 K, and J(rail) ranging from -14 K to -24 K. An unexpected decrease in the exchange constant for J(rail) (through the diazine ligand) is observed when the halide ion is changed from bromide to chloride, along with a small decrease in the magnetic exchange through the halide ion. Theoretical calculations on 2 and 4 via a first-principles bottom-up approach confirmed the description of the complexes as two-leg magnetic ladders. Furthermore, the calculations provide an explanation for the experimentally observed change in the value of the magnetic exchange through the dmpz ligand when the halide ion is changed from bromide to chloride, and for the very small change observed in the exchange through the different halide ions themselves via a combination of changes in geometry, bond lengths, and anion volume.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.