Abstract

In the current study, a series of 2,4-disubstituted-1,3-thiazoles linked with pyrazoline scaffolds 3a-o were rationally designed and synthesized. The structures of the title compounds were elucidated by spectroscopic data (UV–Vis, IR, NMR and Mass spectra) and elemental analysis. Single crystal X-Ray diffraction studies revealed that, the compounds 3i and 3k crystallized in monoclinic crystal system with P21/n space group and Z = 4. The molecules 3i and 3k were connected with intermolecular hydrogen bonds N2—H2 … O1, N3H3 … Cl1 and short contacts (CH … π and CCl … π). Intramolecular hydrogen bonds, N3H3 … N5 and C5H5 ….N1 were also existed. The compounds were evaluated for their anticancer activity against A549 and MCF-7 human cancer cell lines and in vitro antimicrobial activity against pathogenic microbial strains. The compounds bearing chloro atom at the para position of phenyl ring A like 3f, 3j and 3k with the IC50: 7.5, 5.0 and 5.0 μM respectively, exhibited better activity than standard drug Cisplatin (IC50: 10.0 μM). In addition, the compounds 3a, 3f, 3j and 3l have exhibited the similar antimicrobial activity as that of standard drug Ciprofloxacin and Fluconazole. Furthermore, to support the biological potency of the compounds, in silico molecular docking studies were carried out against the E. coli MurB (PDB code: 2MBR) and Jnk1 inhibitor (PDB code: 3v3v) enzymes. The various types of interactions between the compounds and amino acid residue of enzymes were also reported.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call